SAMPLE PAPER SOLUTION (2021-22)

CLASS XII TERM – II

CHEMISTRY THEORY (043)

Important Instructions

- 1. This is only a suggestive answer key/marking scheme.
- 2. Any other correct response/(s) are also accepted.

Q.No.	Suggestive Answers	Step Marking
1. a.	This is due to stearic hindrance/Nu has difficulty in approaching carbon	1
b.	The NH ₂ in conjugation with carbonyl involves in RESONANCE, loses its nucleophilicity	1
2. a.	Increases linearly	1/2
b.	Increases steeply, the degree of dissociation is higher in weak electrolyte	1/2 + 1
3. a	The negative charge is dispersed more on, more electronegative atom i.e. Oxygen in carboxylate ion.	1
3. b.	Iodoform test/Fehling's test/Tollens' test	1
4. a	Because of lower electronegativity of Nitrogen than oxygen/The removal of H as H^{\dagger} is weaker.	1
b.	Primary amines forms more number of Intermolecular H bond/Stronger intermolecular forces of attraction	1
С.	In Aromatic amines lone pairs of nitrogen does resonance with benzene, electron density decreases.	1
OR 4.a.	Due to resonance, aryl part does not detach with halide and can't be introduced on nitrogen salt of Phthalimide.	1
b.	In aromatic salt, Due to resonance, diazonium group does not leave easily and gets extra stability	1
с.	Nitrogen has limited covalency/due to absence of d orbitals	1
5.a.	$[Co(NH_3)_4(H_2O)Cl]Cl_2$	1
b.	[NiCl ₄] ^{2–} contains unpaired electrons	1
с.	$[Co(NH_3)_6]^{3+}$, Co is $d^2 sp^3$ and $[Ni(NH_3)_6]^{2+}$, Ni is $sp^3 d^2 hybridised$.	1
OR a.	If $\Delta o > P$, Pairing occurs and if $\Delta o < P$, pairing does not occur in d subshell.	1
b.	i) $t_2^4 e_g^2$ ii) $t_2^6 e_g^0$	1+1
6.a.	i) $t_2^4 e_g^2$ ii) $t_2^6 e_g^0$ According to CFT Cr^{3+} is more stable in d3 (half filled) system than in d^5 , there Cr loses one electron to be oxidized and behave as reducing agent.	1
b.	This is due to higher ionization enthalpy of Cu as it is a contributory factor to Ev.	1
с.	Mn in +2 state is d5 and this state is highly stable. Conversion from d ⁵ to d ⁴ is highly unstable.	1

7.	$2H_2O + 4NH_3 + 2Ag + $ Silver mirror C_2H_5 NO_2 COO^{-} C_2H_5	1+1+1 (one mark for each correct reaction)
	$CH = NNH$ NO_2 $2, 4-Dinitrophenyl hydrazine$ $+ H_2O \leftarrow$ $2, 4-DNP$ derivative	
8.a.	On increasing temperature molecules on the surface of adsorbent aquires energy ans desorb.	1
b.	This is due to higher surface area.	1
с.	Because energy releases when bond of adsorbate is formed with adsorbent.	1
9	(<i>i</i>) $CH_{3}COOH \xrightarrow{SOCl_{2}}{-SO_{2}, -HCl} CH_{3}COCI \xrightarrow{NH_{3}(excess)}{NH_{4}Cl} CH_{3}CONH_{2} \xrightarrow{Br_{7}/NaOH} CH_{3}NH_{2}$ (<i>ii</i>) $CH_{3}(CH_{2})_{4}CN \xrightarrow{H_{3}O^{+}}{CH_{3}(CH_{2})_{4}COOH} \xrightarrow{SOCl_{2}}{-SO_{2}, -HCl} CH_{3}(CH_{2})_{4}COCI \xrightarrow{NH_{3}(excess)}{-NH_{4}Cl} CH_{3}(CH_{2})_{4}CONH_{2}$ $CH_{3}(CH_{2})_{4}NH_{2} \xleftarrow{Br_{2}/NaOH} CH_{3}(CH_{2})_{4}NH_{2}$ (<i>iii</i>) $CH_{3}OH \xrightarrow{PCl_{5}}{-POCl_{3}} CH_{3}CI \xrightarrow{KCN(alc)}{CH_{3}CN} CH_{3}CN \xrightarrow{H_{3}O^{+}}{CH_{3}COOH}$	1+1+1 (one mark for each correct reaction) Or any other correct conversion
OR 9.a.	$NH_3 (alc) + C_2H_5CI \longrightarrow C_2H_5NH_2 + HCI$	1
b.	$C_6H_5NC + H_2O + KCI$	1
с.	$p-NH_3^+C_6H_4SO_3^-$	1
10.	$E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$	1/2
	$= 1.05V - \frac{0.0591}{2} \log \frac{0.160}{(0.002)^2}$	1/2
	$= 1.05 - \frac{0.0591}{2} \log(4 \times 10^4)$ = 1.05 - $\frac{0.0591}{2} (4.6021)$ = 1.05 - 0.14 V	1
	= 1.05 - 0.14 V = 0.91 V	$\frac{1}{2} + \frac{1}{2}$
11.a.	This is due to high electronegativity and small size	1
b.	Ce ⁴⁺ . Tr ⁴⁺ , Pr ⁴⁺ (Any Two)	1
с.	Shielding of 5f is more poorer than 4f.	1
OR a.	This is due to electron – electron repulsion at the later stage of the series.	1
b.	Lanthanoid Contraction.	1
с.	It is due to lowest intermolecular forces of attraction in zinc as it is d^{10}/no unpaired electrons.	1
12.a.	(i) 0.2M (ii) 0.1M	1+1

b.	Rate = $[A]^{\alpha}$ $[B]^{\beta}$ $r_1 = 5.07 \times 10^{-5} = (0.20)^{\alpha} (0.30)^{\beta}$ (i)	1/2 1/2
	$r_2 = 5.07 \times 10^{-5} = (0.20)^{\alpha} (0.10)^{\beta} \qquad(ii)$ $r_3 = 1.43 \times 10^{-4} = (0.40)^{\alpha} (0.05)^{\beta} \qquad(iii)$	/2 1⁄2
	$\frac{r_1}{r_2} = \frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}} = \frac{(0.2)^{\alpha}}{(0.2)^{\alpha}} \frac{(0.30)^{\beta}}{(0.10)^{\beta}} = 1 = (3)^{\beta}$ $\therefore \beta = 0$	1/2
	$\frac{r_3}{r_2} = \frac{1.43 \times 10^{-4}}{5.06 \times 10^{-5}} = \frac{(0.40)^{\alpha}}{(0.20)^{\alpha}} \frac{(0.05)^{\beta}}{(0.10)^{\beta}}$	1/2
	$= 2.826 = 2^{\alpha} \left(\frac{1}{2}\right)^{\beta}$ 2.826 = 2 ^{\alpha} (as \beta = 0) Taking log on both the sides, we get log 2.826 = \alpha log 2 \approx 0.4511 = \alpha \times 0.3010	
	$\alpha = \frac{0.4511}{0.3010} = 1.498 = 1.5$	1/2
	\therefore Order with respect to A = 1.5 and order with respect to B = 0	